1 Introduction. . . . . . . . . . . . . . . . . . . . 1
1.1 Short Introduction to Graph Theory . . . . . . . . .. 1
1.2 Distance in Graphs. . . . . . . . . . . . . . . . . 2
1.3 Harary Index of a Graph. . . . . . . . . . . . . . . . 2
1.4 Harary Matrix of a Graph . . . . . . . . . . . . . . . 4
1.5 Modified Harary Index . . . . . . . . . . . . . . . . . . . . 8
2 Extremal Graphs with Respect to Harary Index . . . . . 13
2.1 General Graphs . . . . . . . . . . . . . . . . . . . . .. . . . . 13
2.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Generalized Trees . . . . . . . . . . . . . . . . . . . . . 23
3 Relation Between the Harary Index and Related Topological Indices. . 27
3.1 Relation Between the Harary Index and Reciprocal Wiener Index . 27
3.2 Relation Between the Harary Index and Zagreb Indices . . . . . . . 31
4 Some Properties and Applications of Harary Index . . . . . . 35
4.1 Some Properties of Harary Index . . . . . . . . . . . 35
4.2 Application of Harary Index in Pure Graph Theory . . . . . . 39
4.3 Application of Harary Index in Mathematical Chemistry . . . . 40
4.4 Application of Harary Index to Structure–Property Modeling. . . . 48
5 The Variants of Harary Index . . . . . . . . . . . . . . . 55
5.1 Extremal Graphs with Respect to HA and HM . . . . . . . .. 56
5.2 Some Properties of Additively Weighted Harary Index . . . . 63
6 Open Problems . . . . . . . . . . . . . . . . . 69
6.1 Determining the Minimal Harary Index in a Given Set . . 69
6.2 Other Attractive Open Problems . . . . . . 70
No comments:
Post a Comment